skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barry, Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We analyse the stellar distributions on the [Fe/H]–[Mg/Fe] plane for 11 Milky Way-mass galaxies from the FIRE-2 cosmological baryonic zoom-in simulations. Alpha-element bimodality, in the form of two separate sequences on the [Fe/H]–[Mg/Fe] plane, is not a universal feature of disc galaxies. Five galaxies demonstrate double sequences with the $$\alpha$$-enriched one being older and kinematically hotter, in qualitative agreement with the high-$$\alpha$$ and low-$$\alpha$$ populations in the Milky Way disc; three galaxies have unimodal distribution, two show weakly bimodal features where low-$$\alpha$$ sequence is visible only over a short range of metallicities, and one show strong bimodality with a different slope of high-$$\alpha$$ population. We examine the galaxies’ gas accretion history over the last 8 Gyr, when bimodal sequences emerge, and demonstrate that the presence of the low-$$\alpha$$ sequence in the bimodal galaxies is related to the recent infall of metal-poor gas from the circumgalactic medium that joins the galaxy in the outskirts and induces significant growth of the gas discs compared to their non-bimodal counterparts. We also analyse the sources of the accreted gas and illustrate that both gas-rich mergers and smooth accretion of ambient gas can be the source of the accreted gas, and create slightly different bimodal patterns. 
    more » « less
  2. ABSTRACT A variety of observational campaigns seek to test dark matter models by measuring dark matter subhaloes at low masses. Despite their predicted lack of stars, these subhaloes may be detectable through gravitational lensing or via their gravitational perturbations on stellar streams. To set measurable expectations for subhalo populations within Lambda cold dark matter, we examine 11 Milky Way (MW)-mass haloes from the FIRE-2 baryonic simulations, quantifying the counts and orbital fluxes for subhaloes with properties relevant to stellar stream interactions: masses down to $$10^{6}\, \text{M}_\odot$$, distances ≲50 kpc of the galactic centre, across z = 0 − 1 (tlookback = 0–8 Gyr). We provide fits to our results and their dependence on subhalo mass, distance, and lookback time, for use in (semi)analytical models. A typical MW-mass halo contains ≈16 subhaloes $$\gt 10^{7}\, \text{M}_\odot$$ (≈1 subhalo $$\gt 10^{8}\, \text{M}_\odot$$) within 50 kpc at z ≈ 0. We compare our results with dark matter-only versions of the same simulations: because they lack a central galaxy potential, they overpredict subhalo counts by 2–10×, more so at smaller distances. Subhalo counts around a given MW-mass galaxy declined over time, being ≈10× higher at z = 1 than at z ≈ 0. Subhaloes have nearly isotropic orbital velocity distributions at z ≈ 0. Across our simulations, we also identified 4 analogues of Large Magellanic Cloud satellite passages; these analogues enhance subhalo counts by 1.4–2.1 times, significantly increasing the expected subhalo population around the MW today. Our results imply an interaction rate of ∼5 per Gyr for a stream like GD-1, sufficient to make subhalo–stream interactions a promising method of measuring dark subhaloes. 
    more » « less
  3. null (Ed.)
  4. We have created, piloted and are growing the Align program, a Master of Science in Computer Science (MS in CS) for post-secondary graduates who did not major in CS. Our goal is to create a pathway to CS for all students, with particular attention to women and underrepresented minorities. Indeed, women represent 57% and underrepresented minorities represent 25% of all bachelor's recipients in the U.S., but only 19.5% and 12.6% of CS graduates, respectively. If we can fill this opportunity gap, we will satisfy a major economic need and address an issue of social equity and inclusion. In this paper, we present our "Bridge'' curriculum, which is a two-semester preparation for students to then join the traditional MS in CS students in master's-level classes. We describe co-curricular activities designed to help students succeed in the program. We present our empirical findings around enrollment, demographics, retention and job outcomes. Among our findings is that Align students outperform our traditional MS in CS students in grade point average. To date we have graduated 137 students and 827 are enrolled. 
    more » « less